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Therefore, %m%) M exists and equals to 0, that means f is differentiable at = 0
—
and f'(0) = 0.
(b) If x > 0, f'(x) =0. If 2 < 0, f'(x) = =322 Combine them with the result in (a), we have
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. h})L 0 =0, i.e. f’ is differentiable at = 0.

5. Let f(x) = e*, so f is differentiable everywhere.

0. Therefore, lim
h—0

If x > y > 0, by Mean Value Theorem, there exists ¢ € (y, z) such that
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Note that x > ¢ > y, so e* > e > e¥, and we have

eV(x—y)<e® —e¥ <e®(z—y).



i. Put z =y = 0, we have f(0) = [f(0)], so f(0) =0 or 1. If we put 0 to the inequality in
the second condition, we have 1 < f(0), so f(0) = 1.

ii. If z < 0, by the inequality in the second condition, we have
flx)>1—z>1.

iii. If z > 0, then

1= f(0) = f(z — )= f(z)f(-2).

Therefore, f(z) =
If @ > b, then
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Note: b—a <0, s0 f(b—a)> 1.

We put h to the inequality in the second condition, we have

1—h < f(h) <1—hf(h).
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Also, f(h) <1 — hf(h) implies that f(h) < T if h > —1.
Therefore, when A > —1, )

1-h< f(h) < ———.
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Note that lim 1 — h = lim —— = 1, so by sandwich theorem, we have
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lim f(h) =1 = £(0),
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which implies f is continuous at x = 0.

From the inequality in the second condition, we have

1-h<  f(h) <1-hf(h)
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If h > 0, we have —1 < % < —f(h) so by sandwich theorem, we have
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Now, we have
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which implies that f is differentiable at © = 0 and f/(0) = —1.



